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Abstract

Our objective is to develop compact video representations that are sensitive to
visual change over time. To measure such time-sensitivity, we introduce a new
task: chiral action recognition, where one needs to distinguish between a pair of
temporally opposite actions, such as “opening vs. closing a door", “approaching vs.
moving away from something”, “folding vs. unfolding paper", efc. Such actions (i)
occur frequently in everyday life, (ii) require understanding of simple visual change
over time (in object state, size, spatial position, count ...), and (iii) are known to
be poorly represented by many video embeddings. Our goal is to build time aware
video representations which offer linear separability between these chiral pairs. To
that end, we propose a self-supervised adaptation recipe to inject time-sensitivity
into a sequence of frozen image features. Our model is based on an auto-encoder
with a latent space with inductive bias inspired by perceptual straightening. We
show that this results in a compact but time-sensitive video representation for
the proposed task across three datasets: Something-Something, EPIC-Kitchens,
and Charade. Our method (i) outperforms much larger video models pre-trained
on large-scale video datasets, and (ii) leads to an improvement in classification
performance on standard benchmarks when combined with these existing models.

1 Introduction

The ever-increasing scale of video content on the Internet demands efficient and compact descriptors
that can be readily used for classification, ranking and search. The goodness of video descriptors (or
video representations) is largely measured in terms of action recognition on standard benchmarks
such as Kinetics-400 [11], UCF101 [73] and Something-Something [26] to name a few. While action
recognition performance provides a reliable single measure for the representation, more insight is
obtained by establishing how well a given video descriptor encodes various aspects of the video such
as objects, scene context, motion and temporal dynamics. We can coarsely categorize these aspects
into: static properties (objects, scene, etc) and dynamic properties (motion, visual change, efc). It
is well established that, apart from Something-Something, most contemporary video benchmarks
tend to focus more on static properties [33, 10, 42, 47, 106]. While there has been an effort to shift
the focus to evaluating dynamic [57, 26, 71, 47], properties of actions are still entangled with static
understanding without a clear definition of dynamics. In this work, our objective is to study a specific
time-sensitive property: understanding how well video descriptors encode visual change in a video.

What do we mean by “understanding” visual change? Consider an example action pair: “a person
climbing up a ladder” vs. “a person climbing down a ladder”. In this case, the vertical position of the
person changes over time and it is temporally opposite in the two actions. An ideal video descriptor
should encode this change and use it distinguish between such action pairs. We call such action
pairs ‘chiral’, and the task of distinguishing between them ‘chiral action recognition’. Where can we
find such actions? These are quite common in everyday life, and humans effortlessly recognize them.
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Figure 1: (a) We introduce chiral actions: temporally opposite action pairs to test time-awareness of
video descriptors. We build a meta-dataset of chiral actions by mining SSv2, EPIC and Charades. To
build time-aware descriptors, we propose LiFT (Linearized Feature Trajectories) that disentangles a
sequence of DINOV2 features into a static and dynamic descriptor. (b) LiFT outperforms contem-
porary video and image models in recognizing chiral actions across the three datasets. Moreover,
LiFT descriptors can be plugged into existing models (VideoJEPA or VideoMAE) to improve action
recognition on standard benchmarks. (c) shows a linear probe of LiFT with VideoJEPA on SSv2.

In this work, we mine chiral pairs from three existing datasets (SSv2 [26], EPIC-Kitchens [16], and
Charades [72], to set up a chiral evaluation benchmark.

Turning to the descriptors, most existing video representations are obtained by two classes of methods,
either (i) self-supervised video embeddings — natively multi-frame models, trained on millions of
videos [5, 77, 87], or (ii) per-frame image models adapted for video data that are usually trained
for specific datasets [55, 62]. We borrow from both lines of work and propose a self-supervised
adaptation recipe that yields general video descriptors that outperform much larger models [87, 5] for
chiral action recognition. Specifically, we hypothesize that a representation will be time sensitive if the
per-frame features form a smooth trajectory in latent space. Inspired by Perceptual Straightening [30],
we operationalize this by learning a model that maps per frame features from a strong image model
to ordered points on lines in latent space. We show that the two vectors representing these high-
dimensional lines yield time-aware video descriptors. We call our model LiFT for Linearized Feature
Trajectories. Qualitatively, we show that LiFT learns compact video descriptors that encode a
smooth, continuous approximations of the feature trajectories. Quantitatively, we show that LiFT
descriptors are time-aware: they can distinguish between chiral action pairs across three datasets
without specialized fine-tuning.

While LiFT descriptors achieve strong results on chiral action recognition, can they be more generally
useful, say by combining with other video models? In this spirit, we evaluate linear and attentive
probes with LiFT descriptors combined with video models such as VideoJEPA [5] on four standard
action recognition datasets: Kinetics-400 [11], UCF-101 [73], HMDB-51 [40] and SSv2 [26]. We
show that the combination of LiFT and a given video model always outperforms solely using the
video model, across different video models, across all four benchmarks. This demonstrates that the
time-sensitivity in LiFT preserves information that is complementary to standard video models, which
in turn helps /ift performance on action recognition benchmarks. In summary, our contributions are:

1. We propose a new task called chiral action recognition which requires discounting static context
and accounting for the dynamic change in a video. We formulate a meta-dataset from three
action recognition datasets to benchmark this task.

2. We propose LiFT: a self-supervised recipe to adapt DINOv2 features into a compact, time-
sensitive, and general video descriptor. LiFT outperforms much larger video models (e.g., 10x
bigger and trained on over 6x samples) by over 7% on the proposed chiral benchmark.

3. We demonstrate that LiFT encodes time-sensitive information that is complementary to con-
temporary video models. We show that combining LiFT descriptors with video models such as
VideoJEPA [5], VideoMAE [77] and InternVideo2.5 [87] lifts performance with linear as well
as attentive probes as compared to only using these models.
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Figure 2: Linearized Feature Trajectories (LiFT). We propose LiFT as a simple adaptation of
image features to obtain time-aware video descriptors. First, we encode each frame independently
with a DINOv2 backbone. Then, we pass them through a Transformer encoder with two learnable
tokens: z, (static) and z4 (dynamic). Next, inspired by Perceptual Straightening [30], we enforce
linearity in the latent space which enables reconstruction of the trajectory with only the two learnable
tokens. We do not show position encodings and projection layers for brevity. The network is trained
with the usual reconstruction loss and an orthogonality regularization between the static and dynamic
tokens. Once the model is trained, an input video is represented by concatenation of zg, z.

2 LiFT: Video Representation by Linearized Feature Trajectories

Our objective is to learn a single time-aware descriptor vector for a given video. We want to avoid
training large video models [5, 77] from scratch given an academic compute budget. In such a
scenario, usually Parameter-Efficient Fine-Tuning (PEFT) is employed to adapt image models for
video data [55, 56]. However, PEFT is dataset-specific supervised tuning while our goal is to obtain a
more general video descriptor while still adapting an image model without any label supervision.

Considering these desiderata, we propose a simple recipe based on adapting a strong image model with
reconstruction in the latent space. Our central hypothesis is that for videos that depict a visual change,
the per-frame features lie on smooth trajectories that encode such change over time. While these
trajectories tend to be non-linear, we can map them to a latent space in which they are parametrized
by a line. This is loosely inspired by the Perceptual Straightening Hypothesis [30]: humans perceive
image sequences that are non-linear in pixel space as straight lines in the perceptual space. Thus, a
video can be represented simply by the vectors that define this line in the latent space. Owing to this
linear formulation, we call the model LiFT: Linearized Feature Trajectories.

The schematic diagram of LiFT is shown in Fig. 2. Formally, consider a video as a sequence of
images {I;}7_,,I; € RE*H*W vt  First, we encode each frame independently using an image
model ® . We only retain the global CLS token per frame.

x; = ®(I;) € RP, vt. )]

Then, we train an autoencoder network to reconstruct {x;}7 while learning meaningful video
descriptors in its latent space. Now, we describe the Encoder-Decoder network and how we train it.

Encoder. The encoder takes in sequence of frame features and outputs a descriptor for the sequence.
First, we project the feature sequence to a potentially lower-dimensional space.

e = P (x;) € RY vt. )

Sinusoidal position encoding is added to encode the frame index. Then, a Transformer Encoder takes
in this sequence {e;}7 along with two learnable CLS-like tokens: e, and e that are used to encode
static and dynamic information respectively in the feature sequence.

Zs, Zq = TransformerEncoder (es, eq, {€:}) 3)

We collect these tokens output by the Transformer, denoted by z, and z; € R?. The overall video
descriptor is given by their concatenation z € R?<.



Decoder. The decoder takes in zg, z4 and time index ¢ and outputs feature vector as time ¢. In the
latent space, we enforce a linearity constraint defined by z,, z4 as shown in Fig. 2.

t
Zi = 7Zg + (T) zq € REVE 4

The decoder is a two-layer MLP that takes in z; and outputs the reconstructed feature at time ¢.

%; = MLPDecoder(concat ([zs, z4])) € R, V¢, Q)

Training objective. We train the network with the usual reconstruction loss and a regularizer that
encourages orthogonality between the static and dynamic latent vectors.

T
. . Zs z
L= Lrec + Ao = E llx: — %¢|3 + A. cos-sim ( , d) (6)
= 2sll2" l[zall2

Note that this is unsupervised. Once trained, we discard the Decoder and use the Encoder to get a
LiFT video descriptor (z, Zq).

Time-awaremess of LiFT descriptors. To gain an insight into what LiFT learns, first, we visualize
the joint tSNE embeddings of the original and reconstructed trajectories on sample videos in Fig. 3(a).
We also visualize the tSNE embeddings of an example action pair in Fig. 3(b). These illustrate that:
(a) LiFT outputs a smooth, continuous approximation of the original trajectories evident from the
tSNE plot. In a sense, LiFT captures the “arc of change” depcited in the video; and, (b) Thanks to the
simple linearization, LiFT is compelled to learn compact descriptors that can distinguish between
temporally opposite actions such as “opening vs closing a ”
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Figure 3: Qualitative analysis. (a) LiFT reconstructs a smooth, continuous approximation of the
original feature trajectories roughly encoding the arc of visual change. (b) LiFT descriptors are
time-aware: LiFT distinguishes between temporally opposite actions such as “opening/ closing door”.

Implementation details. We use DINOvV2 (ViT-S/14) [54] with registers [17] as the base image
feature extractor with dimension D=384. We only use the CLS token output for each frame. We
linearly sample 7'=16 frames from each video and compute the features ahead of training. The input
feature sequence is first projected to the space of the Encoder R” — R%; we choose d=384. The
Encoder is a standard Transformer [14] with 4 layers and 8 attention heads each. The Encoder uses
sinusoidal position encoding [14] to encode the frame index. The outputs from the two CLS tokens,
2,24 € R? are then projected to a space where we impose the linearity constraint: R? — R?. The
Decoder is an MLP with 2 hidden layers each followed by a GeLU activation [32] and LayerNorm [2].
Overall, the model has 8.7M trainable parameters beyond the 22M parameters of the frozen DINOv2
encoder. We provide more details on the architecture in the Supplemental. We also provide ablations
varying d and the amount of training data in the Supplemental.

Training. We train LiFT on Kinetics-400 [11] which has about 240K videos. Since the image encoder
is frozen, we pre-compute features which makes the training very efficient. The model is trained for
500 epochs with a batch size of 128 with Adam optimizer [39] with a learning rate of 0.001 and a
LRPlateau scheduler.
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Figure 4: Example chiral pairs from each of the three datasets. To distinguish the actions in each
pair, one needs to discount the spatial context and account for what is changing over time and how.

3 Chirality in Action (CiA) Dataset

To quantitatively measure time-awareness of LiFT (or other video descriptors), we propose a new
task, namely, chiral action recognition. The study of time has covered aspects such as arrow of
time [58, 89], order of frames [51, 100], recognizing temporally fine-grained actions [71, 102], or
space-time tracking [94]. Prior work has developed specialized benchmarks and models for such
tasks. In contrast, we want to measure time-awareness of a general video descriptor in recognizing
simple everyday actions. It is well-established that existing action recognition benchmarks are biased
to spatial understanding [33, 70]. Thus, we narrow down our focus on what we call chiral actions.

Chiral actions. In daily life, we often perform actions such as “closing/opening a door”, “fold-
ing/unfolding a cloth” or “getting in/out of a car”. Our proposal is that a good video model should
distinguish between such temporally opposite actions. Loosely inspired by the notion of visual
chirality [48], we call such action pairs as chiral, i.e., pairs that are approximately mirror reflections
along the time dimension. Consider the examples shown in Fig. 4. In distinguishing between these
actions, one needs to discount the spatial context and account for the visual change over time.

Note that unlike in the study of arrow of time [89], we do not artificially reverse time-arrow but in a
sense, our chiral actions have a naturally opposite arrow of time. The notion of chiral actions is also
closely related to reversible actions studied in [60]. However, our work is complementary since we
can use the methods in [60] to identify chiral actions and then evaluate video models on them. Finally,
chiral actions, as we define them, are similar to nearly symmetric actions introduced in concurrent
work by Ponbagavathi and Roitberg [59]. However, we build a meta-dataset of a more general mix of
datasets that includes a richer set of actions, has both exo- and ego-centric videos and is larger in size.

Constructing CiA dataset. We build a meta-dataset out of chiral subsets of popular action recog-
nition datasets. We identify three datasets to build a benchmark for chiral action recognition:
Something-Something (SSv2) [26], EPIC-Kitchens (EPIC) [16], and Charades [72]. These datasets
come with action recognition labels with separate verb and noun annotations. For each dataset, we
build chiral pairs from the provided labels as follows.

1. We pass the list of action verbs to ChatGPT and ask it to find antonym pairs. We manually verify
the output to remove pairs that have hallucinated verbs or those that are not visually antonymous.

2. For each verb pair, we group similar nouns together. For example, for verb pair “opening” vs
“closing”, nouns such as “door/cupboard/drawer” that represent visually similar actions are
grouped. This group is represented by the triplet (“opening”, “closing”, “[door]”). Likewise,
(“opening”, “closing”, “[box]”) represents a separate chiral group where objects such as “tif-
fin/box/parcel”, etc are grouped together. Thus, each chiral group is a triplet consisting of a pair

of opposite verbs and the associated noun.

3. For each chiral group, we split the videos into train and test sets following the split defined in
the original dataset.
Some basic numbers for each dataset are provided in Table | and visual examples are shown in Fig. 4.



Base dataset Chiral groups Avg videos/group Example chiral group

Something-Something (SSv2) [26] 16 852.8 Folding / Unfolding [something]
EPIC-Kitchens (EPIC) [16] 66 412.2 Opening / Closing [door]
Charades [72] 28 768.4 Taking / Putting a [laptop]

Table 1: Numbers for CiA meta-dataset. We mine chiral action pairs in three existing action
recognition datasets to build our benchmark. Visual examples are shown in Fig. 4.
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Figure 5: Time-sensitivity of chiral action recognition. On SSv2 (Chiral), we run simple baselines
with DINOv?2 features to test how time-sensitive the task is. In (a), (b), the video descriptor is obtained
by concatenating per frame features. (a) Single frames chosen at the ends tend to do well but lag far
behind using all frames. (b) Increasing number of frames provides consistent benefit while saturating
around 16 frames. (c) Time insensitive pooling (e.g., mean) of features is noticeably worse than
time-sensitive pooling (e.g., full concatenation or time-weighting).

Evaluation protocol. We measure time-sensitivity as a test of linear separability of chiral actions.
For a given video model and a chiral group, we extract video representations for each video from
the two antonym classes. We train a linear classifier in the feature space on the train set. We repeat
this for each chiral group and report the average accuracy on test set across all groups. There are
several reasons to choose this evaluation protocol: (i) We want the evaluation method to be as simple
as possible so that the true strength of the representation is measured without confounding with the
strength of the evaluation model (i.e., in this case, a linear probe); (ii) Since there can be several chiral
groups (e.g., K=16 in SSv2), it is computationally convenient to train simple linear probes rather
than a more complicated and compute-heavy model for each group; (iii) Evaluating frozen features is
much more common and practical [5, 12] as models get larger and evaluations need to be faster.

Properties of chiral action recognition. To analyze the time-sensitivity of chiral action recognition,
we consider simple pooling baselines for DINOv2 features. The simplicity of the model enables us
to study the task while discounting model strength. We show the results on SSv2 in Fig. 5. This
shows that (a) A single frame chosen at either ends of the video yields a decent baseline as the end
frames depict either the start or the end state of an action which is sometimes informative. However,
the performance of such single frame baseline significantly lags using more frames as shown in (b).
Increasing the temporal context with more frames consistently improves performance. (c) Finally,
we compare time-insensitive pooling methods (e.g., average) with time-sensitive ones (e.g., full
concatenation). We find that time-sensitive pooling does significantly better. Overall, this analysis
highlights that the task at hand (chiral action recognition) benefits from time-aware ordering of many
frames which establishes that it does not suffer as much from a single- or static-frame bias [33, 70].

4 Experiments

In this section, we first present results on our proposed chiral action recognition task. Then, we explore
more general action recognition tasks where our descriptor is useful. In particular, in Section 4.1, we
show that LiFT outperforms much larger video models in distinguishing between temporally opposite
actions without specialized fine-tuning; and in Section 4.2, we show that plugging the LiFT descriptor
with other general video models lifts their performance on standard action recognition benchmarks.

4.1 Chiral action recognition

Experimental details. We follow the evaluation protocol detailed in Section 3. For each chiral group,
we compute video descriptors as described in Section 2 and train a linear classifier. We compare



against two sets of baselines. (i) image models such as the image encoder in CLIP. (ii) Video models
trained with self- or language supervision on large-scale video datasets. Typically, we sample T'=16
frames linearly from the video and compute a single descriptor. For image models, we concatenate
the per-frame features to obtain the video descriptor. For video models based on R(2+1)D architecture
(e.g., TCLR [18]), we sample 7" = 8 clips over the span of the video and concatenate clip features to
obtain a single descriptor. For Transformer-based video models, if the model uses a CLS token, we
treat that as descriptor or average pool all the output tokens unless stated otherwise.

Main result. From the results shown in Table 2, we observe that the proposed LiFT features achieve
the best performance on SSv2, EPIC and Charade, while being compact (d = 768). Notably, LiFT
beats much heavier video models such as VideoMAE, VideoJEPA and InternVideo2.5. Interestingly,
naively concatenating image features with a strong model (DINOv2, Sigl.IP2) generally performs
better or at par with much heavier video models (e.g., VidleoMAE) reinforcing that the complete
sequence of image features does retain rich information for chiral action recognition. However,
naturally, naively concatenating yields very bulky descriptors which may be impractical, say, in
indexing a database with millions of videos. Less surprisingly, Transformer-based video models
outperform ResNet (R(2+1)D) based models.

Finally, we find that careful feature pooling can make a notable difference. For example, Intern-
Video2.5/VideoMAE/VideoJEPA output a sequence of tokens per frame. Average pooling over space
and concatenating over time does much better than average pooling over space and time. Nevertheless,
average pooling output tokens (e.g., from VideoMAE) is still reasonable and time sensitive because (i)
it does not have an explicit CLS token as a single video embedding, (ii) it comprises of 3D space-time
tokens enhanced by temporal position encoding; different frames interact with each other in every
layer of the transformer.

Chiral Accuracy 1
Model Architecture Pooling D| SSv2 EPIC Charades
Chance - - - 50.0 50.0 50.0
CLIP [63] ViT-B/16 Average 512 53.5 63.4 54.7
CLIP [63] ViT-B/16 Concat. 8192 716 716 67.7
BLIP2 [43] ViT-B/16 + Q-Former Concat. 12288  73.2 70.3 67.3
SigLIP [101] ViT-B/16 Concat. 18432 579  66.2 55.2
SigLIP 2 [78] ViT-B/16 Concat. 12288 76.8  74.7 67.8
DINOvV2 [54] ViT-S/14 Concat. 6144 797 741 65.8
ST-Adapter [55] ViT-B/16 Learned 768 50.5 63.7 54.4
DiST [62] ViT-B/16 Learned 512 52.1 59.9 55.9
Tubelet Contrast [75] R(2+1)D Concat. 4096 64.6 62.8 58.9
TCLR [18] R2+1)D Concat. 4096 679 625 58.8
CTP [84] R2+1)D Concat. 4096 78.8 644 58.0
VideoMAE [77] ViT-L/16x16x2 Average 1024 80.3 70.5 59.1
VideoMAEV2 [85] ViT-B/16x16x2 Average 768 65.3 67.5 55.5
SIGMA [67] ViT-B/16x16x2 Average 768 66.5 69.1 56.1
MME [74] ViT-B/16x16x2 Average 768 784 708 57.5
VideoJEPA [5] ViT-L/16x16x2 Average 1024 804 674 56.4
InternVideo 2.5 [87]  InternViT-6B Average 4096 55.8 66.1 55.4
VideoMAE [77] ViT-L/16x16x2 Time concat. 8192 85.7 75.0 66.1
VideolJEPA [5] ViT-L/16x16x2 Time concat. 8192 85.4 70.8 57.1
InternVideo 2.5 [87]  InternViT-6B Time concat. 32768  80.0 70.9 62.8
LiFT (Ours) ViT-S/14 Learned 768 86.6 75.5 69.5

Table 2: Results on chiral action recognition. (1) Our method (LiFT) of efficiently adapting
sequential information in DINOv2 features has the best performance on the chiral splits of all three
datasets. (2) On average, sequence of image features contain stronger discriminative information for
chiral actions in comparison to native video models.



Ablation study. We run ablation over key design choices such as the image encoder in LiFT. Results
of ablation study on SSv2 are shown in Table 3. We note that self-supervised image features such
as iBOT [105] and DINOv2 [54] outperform language-supervised models such as CLIP [63] or
SigLIP2 [78]. We hypothesize that since DINOv2/iBOT are better at capturing spatial details, their
feature trajectories of a video tend to better capture smooth visual change compared to language-
supervised models. From the last two rows, we also establish that using the orthogonal loss does
provide a small benefit in chiral action recognition.

What kinds of change are easier to understand? We categorize the visual change involved in each
chiral action pair. For example, in "moving towards/away from the camera", the object size or depth
changes or in "taking/putting one of many objects on table", the object count changes. We average the
performance across all chiral pairs that depict a given kind of visual change across all three datasets
and report in Table 4. We find that LiFT features shine in distinguishing chiral actions that involve
change in object state or count but struggle in those with change in position along z-axis.

Image encoder Architecture SSv2 (Chiral)

Change type VMAE VJEPA LiFT

CLIP ViT-B/16 759 Dist. bet. objects  70.8 875 875
SigLIP2 ViT-B/16 77.8 :

. Object count 64.2 62.4 72.4
BLIP2 ViT-B/16 + Q-Former 75.7 - :
. . Object size/depth 96.8 96.8 96.8
iBOT ViT-B/16 80.3 .

. Object state 72.9 66.3 80.7
DINOV2 ViT-B/14 85.4 : e

. Spatial position <> 96.3 96.1 75.2
DINOv2 ViT-L/14 85.9 Spatial position 91.5 89.7 93.6
LiFT w/o Lonn ~ VIT-S/14 85.9
LiFT ViT-S/14 86.6

Table 4: Performance across kinds of
change. Color green denotes performance at
par or better than competing models and red
denotes worse. LiFT features shine in distin-
guishing chiral actions that involve change
in object state or count but struggle in those
with change in position along z-axis.

Table 3: Ablation on image encoders. (i) self-
supervised image features (e.g., iBOT/DINOv2) out-
perform language-supervised features (e.g., CLIP),
(i1) with DINOvV2, features out of larger models do
not necessarily show improvement, (iii) using orthog-
onality loss helps by better disentangling z, z4.

4.2 LiFTing video models on standard benchmarks

While LiFT outperforms much heavier video models in recognizing chiral actions, can it help improve
performance on standard action recognition? We conduct an extensive linear probe evaluation across
four standard datasets: Kinetics-400 (K400) [83], UCF-101 [73], HMDB-51 [40] and SSv2 [26]. The
experimental details are provided in the Supplemental. As shown in Table 5a, while LiFT by itself
does not beat top video models, concatenating LiFT with such video models consistently lifts their
performance. This indicates that LiFT descriptors have complementary information. Furthermore, in
Table 5b, we ablate over kinds of probes and model sizes used. We consistently observe a benefit
with LiFT. Interestingly, with VideoJEPA as well as VideoMAE, ViT-L combined with LiFT even
outperforms a scaled up ViT-H. Thus, overall, an adapter such as LiFT when combined with standard
video models can provide strong video representations useful for classification, retrieval and search.

5 Related Work

Human perception of videos and time. Psychologists have tried to understand how humans perceive
visual change in videos (e.g., motion) for a long time [88, 81]. More recently, Hénaff et al. [30] present
a remarkable finding: visual system in humans and macaques transforms complex pixel dynamics in
videos into straighter temporal trajectories [30, 31]. Straighter trajectories make predictions easier
and predictions are a fundamental part of human perception. Inspired by this insight, we learn an
auto-encoder on image feature trajectories with linearity baked in the latent space. Although there
is some prior work inspired by Perceptual Straightening [25, 53, 29], we apply it to a sequence of
image features and show that it leads to more general time-aware representations.

Time-aware video representations. Temporally pooling image sequences has been a classical way
of representing videos. Carefully crafted pooling in pixel space [8], in motion/flow space [9] and in
embedding spaces [21] have been devised. Since the prominence of deep learning on videos, time
has been creatively used as a source of self-supervision: space-time jigsaw [38], time arrow [89,
60], time order [95, 92, 24], speed [6], tracking [34, 83],contrasting temporal views [61, 18, 66],



Model K400 UCF HMDB SSv2 Arch. Probe Base Base®LiFT A

Chance 025 099 196  0.58
LiFT 554 86.6 652 308  VITL Nonlin. 517 542 425
VIEPA 508" 913 76.1 496" ViT-L  Attentive 65.9T 66.9 +1.0
VIEPA @ LiFT 637 926 780 523 x%T'L Linear  49.6' 52.3 +2.7
A 3397 +13 +1.9 27 iT-H Linear 51.5 53.9 +2.4
VideoMAE 550 83.6 665 383 . .
VideoMAE & LiIFT ~ 63.6  88.8 726 463  YIFL  Nonlin. 439 50.1 +6.2
A R 4so 4l 6o VITL Atentive 615 63.7 +2.2
VIT-S  Lincar  19.4 373 +17
InternVid2.5 628 882 719 234  ViTB Linear  25.6 411 +16
InternVid2.5 @ LIFT 659  90.3 753 359  ViTL Linear 383 46.3 +6.0
A +3.1  +2.1 +3.4 ['¥115 ViT-H Linear 40.0 46.9 +6.9

(a) LiFT combined with video models lifts their perfor- (b) LiFT consistently improves performance of
mance results across four action recognition benchmarks.  video models across model scale and probes.

Table 5: Results on standard action recognition datasets. LiFT improves probing accuracies with
standard video models across datasets and model sizes. TNote: The numbers for VideoJEPA are
obtained with our experimental setup. We could not precisely reproduce the numbers reported in the
paper [5] even using their codebase. We have reached out to the authors for clarification.

cycle consistency in time [20] or explicitly modeling temporal dynamics [103, 35, 15]. Modern
video encoders are based on Transformers [7, 1, 49, 77, 85, 5]. Data-efficiency [75, 77] and time-
sensitivity [67, 76, 96, 19] of video models continue to be active areas of research [69]. In this work,
we investigate time-sensitivity of existing models through chiral action recognition and propose a
simple recipe to embed videos based on summarizing trajectories of image features. Concurrent to
our work, Xue et al. [93] propose a reinforcement learning-based training strategy to instill arrow
of time awareness in video LLMs. Our chiral actions are related to the arrow of time, but we do
not artificially reverse the arrow of time in a video; instead we aim to distinguish actions that are
naturally opposite along the arrow of time.

Action recognition benchmarks. Early datasets for action recognition in videos include UCF-
101 [73], HMDB-51 [40], Sports-1M [36] and Kinetics [11]. Transformers [82] prompted the rise of
multimodal video datasets with text [50, 4], audio [23, 13] and 3D [79, 27]. LLMs led to the rise of
instruction-tuning datasets [44, 104] and benchmarks [45, 22, 57] for videos. However, the community
has repeatedly discovered that a majority of these do not actually test for time; a single frame or
an unordered set of frames would suffice to recognize the action in the video [33, 10, 42, 47, 106].
SSv2 [26], Diving-48 [47] introduced temporally sensitive actions while other datasets evaluate
specific aspects: causal/counterfactual reasoning [97, 91, 57], compositionality [28, 99], concept-
binding [37, 68], temporal prepositions [3] and verbs [52, 70]. In this work, we propose chiral action
recognition that evaluates video features in discriminating temporally opposite actions. Our definition
of chirality is related to that of equivariant actions in Price and Damen [60] but their aim was more to
discover actions invariant/equivariant to time flipping. Chirality is also related to nearly symmetric
actions in concurrent work by Ponbagavathi and Roitberg [59]. However, unlike [59], we propose a
more general video embedding model trained in an unsupervised manner.

Efficient adaptation of image models to videos. Given the computational cost of training video
models from scratch, Parameter Efficient Fine-Tuning (PEFT) methods to adapt image models for
videos have emerged [55, 65, 80, 62, 46]. Since we use frozen DINOv2 features, our work also
adapts image model for video recognition. However, PEFT methods are usually trained separately
for each downstream dataset and generally used in a supervised learning setup. Our method is more
generally applicable. It is trained in an unsupervised manner on Kinetics-400 and the resulting video
embeddings are shown to be applicable for chiral action recognition across three datasets.

6 Discussion and Conclusion

In an effort to develop time-sensitive video descriptors, we proposed Linearized Feature Trajectories
(LiFT): a simple recipe to adapt DINO per-frame features with an auto-encoder with an inductive
bias inspired by Perceptual Straightening [30]. As a measure of time-sensitivity, we introduce chiral
action recognition to distinguish between temporally opposite actions such as “opening vs. closing a



door”. We created the CiA meta-dataset with chiral pairs mined from three public datasets: SSv2 [26],
EPIC [16], and Charades [72]. On CiA, we show that LiFT outperforms much heavier video models
including VideoJEPA [5] and VideoMAE [77] while being compact. Furthermore, we show that the
time-sensitive LiFT descriptors contain information that is complementary to standard video models.
For example, LiFT when combined with VideoJEPA lifts performance across four action recognition
benchmarks: Kinetics [11], UCF [73], HMDB [40] and SSv2 [26].

Future work. Since we only use per frame CLS tokens, LiFT likely misses out on some spatial
details, especially horizontal translation as shown in Table 4. Investigating ways of mitigating this,
e.g., using a sequence of dense feature maps, is an open avenue for future research. Furthermore, since
our recipe is self-supervised, combining it with other compute-heavy self-supervised pre-training
paradigms such as Masked Modeling [77, 5] or Autoregression [64, 90] should be interesting avenues
to imbue more time-sensitivity into these representations.
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A Dataset: Chirality in Action (CiA)

Metadata and examples. In Table 6, we show the chiral groups constructed in SSv2. Similarly, we
construct 66 chiral groups in EPIC and 28 groups in Charades. In Table 7, we show the number of
videos in the chiral splits of each of the three datasets. We attach the chiral splits for all three datasets
as part of the Supplemental. We also provide a single CSV file that includes the chiral groups for all
three combined data sets. We also show more examples of chiral pairs from each of the three datasets
in Fig. 6, Fig. 7 and Fig. 8. In general, since SSv2 has single canonical actions, it is a cleaner test bed
for chiral action recognition. EPIC and Charades usually have a more cluttered visual context where
cues for chiral recognition are more subtle.

Verb — Verb + Noun (object)
Pulling [something] from left to right Pulling [something] from right to left [’something’]
Pushing [something] from left to right Pushing [something] from right to left [’something’]
Turning the camera left while filming [...] Turning the camera right while filming [...] [’something’]
Approaching [something] with your camera Moving away from [something] with your camera [’something’]
Closing [something] Opening [something] [*object’]
Closing [something] Opening [something] [’door’]
Closing [something] Opening [something] [’bottle’]
Closing [something] Opening [something] [’book’]
Closing [something] Opening [something] ['purse’]
Closing [something] Opening [something] [’drawer’]
Moving [...] and [...] away from each other Moving [...] and [...] closer to each other [’something’]
Moving [something] away from the camera Moving [something] towards the camera [’something’]
Moving [something] down Moving [something] up [’something’]
Putting [something similar to other things ...] Taking [one of many similar things on the table] [’something’]
Turning the camera downwards while filming [...] ~Turning the camera upwards while filming [...] [’something’]
Folding [something] Unfolding [something] [’something’]

Table 6: Chiral groups in SSv2. We construct 16 chiral groups in SSv2 by identifying temporally
opposite verbs. Note that “opening vs. closing” is split across different objects representing entirely
different actions. Noun “[‘something’]” denotes a placeholder which can include any appropriate
object that fits with the action verb.

Dataset  Chiral groups Total videos Avg. videos per chiral group Avg. duration (s)
Train  Validation  Train Validation

SSv2 16 12216 1430 763.5 89.4 3.6

EPIC 66 24101 3108 365.1 47.1 1.6

Charades 28 16018 5498 572.1 196.4 8.6

Table 7: CiA dataset size. For each of the constituent datasets, we show the total number of videos
in the proposed chiral split and also the average number of videos per chiral group. Note that we train
one linear probe for each chiral group.

Time-sensitivity of CiA. In Fig. 9 and Fig. 10, we repeat the experiments to check time-sensitivity
(Fig 5 in the main paper) of the CiA benchmark on all three datasets. Our inferences about time-
sensitivity hold for all three datasets.
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Figure 6: CiA samples from SSv2. More examples of chiral pairs from the train set of SSv2. The
positive direction actions are marked in blue while the negative direction ones are marker in red.
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Figure 7: CiA samples from EPIC. More examples of chiral pairs from the train set of EPIC. The
positive direction actions are marked in blue while the negative direction ones are marker in red.
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Figure 8: CiA samples from Charades. More examples of chiral pairs from the train set of Charades.
The positive direction actions are marked in blue while the negative direction ones are marker in red.

B Model: Linearized Feature Trajectories (LiFT)

Architecture. A detailed sketch of the architecture is provided in Fig. 11. In LiFT, the Encoder
takes in a sequence of features {x; }; and outputs two descriptor tokens zs, z4. First, a linear layer
projection is applied R” — R<. Then, Sinusoidal position encoding is added representing frame
index t. The two CLS tokens e;, e4 are initialized randomly. Then, the CLS tokens along with the
sequence tokens are passed through a Transformer with L=4 blocks and H=8 heads each. Each
block has a multi-head self-attention (MHSA) layer followed by a FEN layer. Both the layers are
preceded by LayerNorm layers. Then, the outputs for the two CLS tokens are projected with a linear
layer (R? — R?) followed by LayerNorm. This gives the latent descriptors z, and z.

The decoder takes in z,, z4, t and outputs x;. First, we construct an intermediate representation for
the frame at index ¢ using our linearity constraint in the latent space.

2zt =25+ (t/T).2q @)

Then, this is passed to an MLP network with two hidden layers each followed by GeLU activation
and LayerNorm. The first hidden layer maps R? — R?? and the second layer maps R?? — R?¢,
This is followed by a linear projection (R?¢ — R?) back to the DINOv2 space.

Compute resources. In order to train LiFT, we first compute and store feature vectors for DINOv2
ViT-S/14. This feature computation is run on 4 NVIDIA RTX A4000 16GB GPUs in parallel. It
takes about 12 GPU hours to compute features for 250K videos in Kinetics-400. Once features are
computed, LiFT is trained on a single consumer-grade GPU (e.g., NVIDIA RTX A4000, Tesla P40,
Quadro RTX 8000, NVIDIA RTX A6000). A single training run takes about 15 GPU hours.
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Figure 9: Time-sensitivity of CiA: Part 1. We repeat the experiment shown in Fig 5 (a)/(b) of the
main paper for all datasets. Rows represent datasets while columns represent different properties of
the task. (a) A single-frame baseline tends to do well on frames at the end of the video sequence
since those usually encode either the start or end state of the action. (b) A two-frame baseline usually
does best if the frames are picked at the two ends of the video. (c) As more frames are considered in
the context, accuracy on chiral action recognition improves. Overall, these demonstrate that chiral
action recognition is time-sensitive: it benefits predictably from more frames, especially at the ends.

C Experiments

C.1 Setup details

Details for chiral action recognition. To benchmark a given video model for chiral action recog-
nition, we require a single descriptor vector for a video. There are two important details here: (i)
input processing pipeline: Different methods differ in the way they sample frames, apply cropping
operations, etc. (ii) pooling: existing methods [5, 77, 18] usually only represent short clips (sequence
of frames with a fixed stride), so we need a way of pooling clip-level descriptors into a video-level
descriptor. For (i), we follow the data pipeline for each model as provided. For (ii), depending on the
method, we either average pool per-clip representations following [41] (e.g., for VideoMAEv2 [85])
or concatenate them (e.g., for 3D ResNet methods like TCLR [18]), or we hand-craft a pooling
mechanism (e.g., averaging spatial tokens for each frame and concatenating across time for Intern-
Video2.5 [86]). Investigating a general pooling method that gives more time-aware descriptors is an
avenue we leave for future work. For image-based model, we sample 7" frames linearly and simply
concatenate per-frame features to represent the video.

Details for standard action recognition. For the experiments with probing video models [38, 77,
87] with LiFT, we sample a single clip of 7'=16 frames with a stride of s=4, resize the short side and
center crop to (224, 224). Since VideoMAE, VideoJEPA and InternVideo2.5 all produce a sequence
of space-time tokens without any global CLS token, we compute the average of all tokens to represent
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Figure 10: Time-sensitivity of CiA: Part 2. We repeat the experiment shown in Fig 5 (c¢) of the
main paper across all three datasets. We show that time-insensitive pooling of per-frame features
(e.g., average pooling) leads to much worse performance that with time-sensitive pooling (e.g.,
concatenation) on chiral action recognition. Note that all the pooling methods considered are non-
parametric. This demonstrates the time-sensitivity of chiral action recognition since incorporating the
time order of frames substantially improves performance.
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Figure 11: LIFT architecture details. The encoder takes in a sequence of DINOv2 features and
outputs a video descriptor disentangled into static and dynamic vectors. The decoder reconstructs the
feature sequence with linearity baked in the latent space.

the video in case of linear/non-linear probing. Then, we concatenate the LiFT descriptor with this
descriptor and train a classifier head on top to output the action class. In case of linear probe, the
classifier head is a linear layer. In case of non-linear probing, it is a two layer MLP with 512 hidden
dimensions with ReLU non-linearity and Dropout of 0.1. In case of an attentive probe, following [5],
we train a single attention layer with a learnable query to pool the space-time tokens into a single
descriptor. Then, LiFT is concatenated with the query vector and a linear classifier layer is added on
top of the concatenation. We train the probe for 100 epochs using Adam optimizer with learning rate
of 1e~® and LRPlateau scheduler.

C.2 Additional Ablations

Varying the latent dimension d. In Tab. 3(a), we vary the latent dimension of the Encoder in LiFT.
While the number of parameters increases with d, we find that with d = 384, LiFT achieves the best
performance while still being compact and containing only 8.7M parameters. Note that we do not
account for the fixed DINOv2 parameters (22.1M) in this experiment.
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Varying the amount of training data. In Tab. Appendix C.2 (b), we vary the amount of training
data used to train LiFT with the unsupervised reconstruction loss. We fix the latent dimension to
be d = 384 and note that the model capacity is fixed. For each row, we run the experiment with
three different random seeds and report the average and standard deviation in accuracy. Surprisingly,
even with 10% of the data, LiFT gets to 83.3% accuracy. With increasing data samples, the mean
accuracy increases marginally. We hypothesize that this is due to two reasons. (i) The model size
remains fixed (8.7M) and may not have the capacity to significantly benefit from more samples,
(i) since Kinetics-400 is known to be biased to static understanding (single frame or unordered
set of frames [33, 70]), for videos with little visual change, reconstructing the per-frame feature
trajectories may not have sufficient signal to inform LiFT. This experiment raises some interesting
research questions. Is it possible to achieve time-sensitive video representations by training on
selected, temporally hard samples only? Is using synthetic data with hand-crafted temporal patterns
sufficient [75, 98]7 We leave these questions for future work.

Data frac.  Accuracy

Latent dim d Accuracy Parameters (M)

0.1 83.3+0.1
192 85.9 23 0.2 84.4+0.2
256 85.8 4.0 0.4 859+04
384 86.6 8.7 0.6 85.6 £ 0.6
512 84.9 15.3 0.8 85.8 £ 0.8
1.0 86.2 £ 04

(a) Varying the latent dimension d of Encoder.
(b) Varying the % train data.

Table 8: Ablations. Both ablations are conducted on the chiral subset of SSv2. In (a) we vary the
latent dimension of the LiFT encoder. We find the best performance with d = 384. In (b), we vary
the amount of training data (Kinetics-400) used to adapt LiFT. The given % is uniformly randomly
chosen from the entire dataset. Surprisingly, even with 10% of the data, LiFT gets to 83% accuracy.
We hypothesize that at fixed model capacity, scaling up to more samples gives diminishing returns.

Error bars. To compute error bars, we train LiFT on Kinetics-400 with five different random seeds.
The rest of the training configuration is kept constant across all runs. Then, we evaluate the trained
models on our main task: chiral action recognition as described in the main paper across the three
datasets, SSv2, Charades and EPIC-Kitchens. We report the mean and standard deviation in accuracy
in Table 9. The table illustrates these results, highlighting the consistency of the model’s performance.

Dataset Accuracy (%)

SSv2 86.1 +£0.3
EPIC 76.5 + 0.8
Charades 703 +£0.6

Table 9: Error bars for LiFT. Mean accuracy across five random seeds. LiFT remains fairly stable
and the error bars emphasize the difference between LiFT and other video models.

C.3 Qualitative results

In Fig. 12, we show more examples with tSNE embeddings of the LiFT reconstructed feature
trajectories. In most cases, LiFT reconstructs a smoother, continuous approximation of the original
trajectory. Note that the original trajectory points seem more scattered than they actually are because
tSNE optimizes for local neighborhood distances, which are dominated by closeness of points in
the reconstructed trajectory. In case of Fig. 12(f), we observe a divergence between the true and
reconstructed trajectories. In this case, the model likely fails to capture the (subtle) visual change
which likely causes z, to be inaccurate leading to the discrepancy.
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(a) Folding cloth [SSv2] (b) Opening drawer [SSv2] (c) Closing a book [ SSV2]
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Figure 12: More qualitative samples of reconstructed features. We show tSNE embeddings of
original and reconstructed features for six videos. The red circles represent original features while
blue squares represent reconstructions. Gradient of the color encodes the frame index (time). In
general, LiFT tends to output a smooth, continuous approximation of the original feature trajectories
in DINO space. (f) is an example failure case where the static token seems reasonable but the direction
token is inaccurately predicted causing the direction of original and reconstructed trajectores to differ.

C.4 The curious case of horizontal motion

Based on Table 4, it seems that correctly encoding horizontal motion (distinguish between something
moving — and —) is much harder than encoding vertical motion. Notably, we find that the base
model itself (DINOv2-ViT-S/14) struggles with this kind of horizontal motion. Ideally, a change in
horizontal spatial position (“moving left to right” vs “moving right to left”) should result in dynamic
tokens pointing in opposite directions. But this is conditioned on the base model reliably encoding
the horizontal spatial position of an object at a given time. Our experiments in Table 10 confirm
that the base model itself (DINOv2) does not accurately encode the horizontal spatial position of an
object.

Change type VideoMAE VJEPA DINOV2 (concat.) LiFT
Distance between objects 70.8 87.5 83.3 87.5
Object count 64.2 62.4 69.5 724
Object size/depth 96.8 96.8 92.2 96.8
Object state 72.9 66.3 75.9 80.7
Spatial position <+ 96.3 96.1 75.7 75.2
Spatial position J 91.5 89.7 79.7 93.6
Average 82.1 83.1 79.4 84.4

Table 10: LiFT is comparable or superior to much larger video models for all types of visual
changes except horizontal shift. On horizontal shift (e.g., “Pulling something from left to right
vs. right to left”), LiFT is worse than these video models. As evident from the DINOv2 (concat.)
column, we confirm that this is because the concatenated base DINOv2 features do not encode such
motion as well as the video models.
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Change type LiFT (1.) w/224 — 448 (2.) w/ WebSSL  (3.) w/ TTR

Distance between objects  87.5 95.8 91.7 91.7
Object count 72.4 73.7 73.9 73.2
Object size/depth 96.8 929 92.2 96.9
Object state 80.7 80.3 80.7 79.2
Spatial position <+ 75.2 824 79.7 77.9
Spatial position J 93.6 94.4 92.8 92.4
Average 84.4 86.6 85.2 85.2

Table 11: We show three directions that improve the performance on encoding horizontal shift
motion. TTR denotes test-time rotation augmentation.

Furthermore, we dug deeper into analyzing the DINOv2 feature sequences for horizontal vs vertical
shift samples. We hypothesize that the root cause of the difference in performance of DINOv2 concat.
(and consequentially, LiFT) on horizontal vs vertical shifts is due to anisotropic sensitivity of DINO
feature sequence, i.e., DINO features vary less with horizontal movement vs vertical movement.
Below, we explain our experimental setup and the observations.

To have a perfectly controlled test setting, we generate N=2000 synthetic sequences with a checker-
board background and a colored disc that moves either horizontally (from left end of the image to
right) or vertically (from top to bottom) at a constant rate. We compute the DINOv2 feature vector
for each frame in the sequence. To measure the variation over time, we compute the variance over
time and then average it across the feature dimensions. We call this Time Variance (TV). We compute
the TV for each sequence and then average it over all sequences for horizontal (or vertical) shifts.

We find that mean Time Variance in vertical shift sequences is about 25% higher than that in
horizontal shift sequences. This supports our hypothesis about inherent anisotropic sensitivity of
DINOV?2 features in case of horizontal or vertical shift motion. We will include this analysis on
synthetic sequences along with qualitative tSNE visualizations in the supplementary material of the
final paper.

It is worth asking why this difference is observed in horizontal vs vertical motion. Is it something to
do with the DINO’s training procedure (e.g., cropping mechanism) or position encodings in DINO or
something else? Likewise, this connects to how we remedy this (e.g., by training DINO with rotated
images?). All these questions require more time and deeper investigation and we defer them to future
work. However, we do offer three directions that improve the performance on horizontal motion.

Possible mitigation. We highlight three promising directions to fix this. In the following, we show
the resulting improvements in Table 11, and then explain the rationale for each direction below.

* Scaling up the image resolution at test-time: we hypothesize that encoding of fine-grained
information such as the spatial positions of objects should improve with image resolution. This
provides a +7.2 point improvement in the spatial position while improving the average across all
types of changes by 2.2%.

* Improving the base model: an inherently better model should encode spatial positions better. We
use WebSSL [2] which is a scaled up DINO-like image model trained on 2B samples. It yields a
boost of +4.5% on horizontal shift.

» Using image rotations as a form of test-time recovery: interestingly, we note that encoding of
position along the vertical axis is better than that along the horizontal axis. We exploit this fact
and concatenate embeddings of videos rotated by 7 /2, 7, 27 /3 with that of the upright video.

There is still a gap of 14% between best LiFT model and VideoMAE on horizontal shift. There is

more work to do here but we re-iterate that LiFT is stronger than the video encoders for all other
kinds of visual change.
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