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Qualitative Analysis

o Effective for finding correspondences between images

and captions.
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Is not restricted to a fixed set of class labels --> CLIP

Panoptic Narrative
Grounding Dataset

0 accepts basically any word on sentence in the English
language.

In this image a bed is visible on which
two dogs and cat are sleeping, cushions
and blankets are visible and book visible.
Background walls are white in color and
a curtain visible and a table visible. This

In this image a bed is visible on which
two dogs and cat are sleeping, cushions
and blankets are visible and book visible.
Background walls are white in color and
a curtain visible and a table visible. This

0 [3] provides fine-grained grounding (segmentations)

/

of parts of a sentence.

Pepper the
aussie pup

——3y Text Encoder

I

0 Can be used to quantify how well components of text

. nalian” image is taken inside a room image is taken inside a room
_— Predicted Relevance Input text Predicted Relevance Input text
5 I3 LT | LT [T | . | TN
\ = =
—> 11 LT [Ty | T3 | .. |ITN DISCUSSIO“ FUtu re WO rk
Image = = =
Encoder g 3T | 13Tz | 15T 3T & LI m |tat|0ns
/ We evaluate CLIP’s ability to align vision Study how to incorporate explainability maps into
—> Iy INT) | INTy | IN T, v | INTN and language at fine-grained level using the pre-training of CLIP in order to improve its
transformer-explainability cross-modal grounding abilities.

0 CLIP indeed is capable, to an extent, of = = = = = = = = = = = = = = = = = = = = = = = = = = == = = =

cross-modal grounding References: [1] Radford et al, Learning Transferrable Visual Models

RQ: If CLIP is not enforced to explain why a caption E Cep - from Natural Language Supervision, Arxiv, 2021
and image correspond, how can we verify if CLIP actually We rel th tion that th Ep'?i.li'm‘ (2] Chefer et al, Generic Attenti del Explainabilit
.. . . . . e rely on the assumption tha e . 3 efer et al, Generic ention-model Explainability
looks at the relevant signals? In this image | can see two zebras which are in black white color. e Attribution method perfectly represents :;‘*-‘O.?h for Interpreting Bi-modal and Encoder-Decoder
. . . riputi r repr o 0 b ;
these are standing on the ground. in the back i can see many trees. P y rep 2 §  architectures, ICCV 2021
CLIP’s behaviour. Ol o

[3] Gonazlez et al, Panoptic Narrative Grounding, ICCV
2021



