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Reproducibility Summary

Scope of Reproducibility
In this work, we study the reproducibility of the paper Counterfactual Generative Networks
(CGN) by Sauer and Geiger to verify their main claims, which state that (i) their pro‐
posed model can reliably generate high‐quality counterfactual images by disentangling
the shape, texture and background of the image into independentmechanisms, (ii) each
independent mechanism has to be considered, and jointly optimizing all of them end‐
to‐end is needed for high‐quality images, and (iii) despite being synthetic, these coun‐
terfactual images can improve out‐of‐distribution performance of classifiers by making
them invariant to spurious signals.

Methodology
The authors of the paper provide the implementation of CGN training in PyTorch. How‐
ever, they did not provide code for all experiments. Consequently, we re‐implement
the code for most experiments, and run each experiment on 1080 Ti GPUs. Our repro‐
ducibility study comes at a total computational cost of 112 GPU hours.

Results
We find that the main claims of the paper of (i) generating high‐quality counterfactuals,
(ii) utilizing appropriate inductive biases, and (iii) using them to instil invariance in clas‐
sifiers, do largely hold. However, we found certain experiments that were not directly
reproducible due to either inconsistency between the paper and code, or incomplete
specification of the necessary hyperparameters. Further, we were unable to reproduce
a subset of experiments on a large‐scale dataset due to resource constraints, for which
we compensate by performing those on a smaller version of the same dataset with our
results supporting the general performance trend.

What was easy
The original paper provides an extensive appendix with implementation details and hy‐
perparameters. Beyond that, the original code implementation was publicly accessible
and well structured. As such, getting started with the experiments proved to be quite
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straightforward. The implementation included configuration files, download scripts for
the pretrained weights and datasets, and clear instructions on how to get started with
the framework.

What was difficult
Some of the experiments required severe modifications to the provided code. Addition‐
ally, some details required for the implementation are not specified in the paper or in‐
consistent with the specifications in the code. Lastly, in evaluating out‐of‐distribution
robustness, getting the baseline model to work and obtaining numbers similar to those
reported in the respective papers was challenging, partly due to baseline model incon‐
sistencies within the literature.

Communication with original authors
We have reached out to the original authors to get clarifications regarding the setup
of some of the experiments, but unfortunately, we received a late response and only a
subset of our questions was answered.

1 INTRODUCTION

Despite the considerable popularity of deep learningmodels within the field of artificial
intelligence, recent literature suggests that these networks have a tendency of learning
simple correlations that perform well on a benchmark dataset, instead of more com‐
plex relations that generalize better [2, 3, 4]. This phenomenon, which is referred to
as shortcut learning by Geirhos et al. [5], makes these models more sensitive to input
perturbation and unseen input contexts.

In order to enhance the robustness and interpretability of classifiers, Sauer and
Geiger [1] introduce the idea of a Counterfactual Generative Network (CGN). Using appro‐
priate inductive biases to disentangle separate components within the input images,
such as object shape, object texture, and background, this model is capable of augment‐
ing training data with generated counterfactual images. The authors claim that, using
this model, they were able to improve out‐of‐distribution (OOD) robustness with only a
marginal performance decrease for the original classification task.

In this work, we aim to reproduce their findings, verify their claims, and perform
additional experiments to provide further evidence to support their claims. In summary,
this work makes the following contributions:

• We reproduce the main experiments conducted by Sauer and Geiger [1] to identify
which parts of the experimental results supporting their claims can be reproduced,
and at what cost in terms of resources (e.g., computational cost, development ef‐
fort, and communication with the authors).

• We improve the performance consistency of the CGN during training.

• We extend upon the work of Sauer and Geiger by empirically analyzing the deci‐
sions made by classifiers based on their proposed model. Based on this analysis,
we propose a method to quantify the robustness of such classifiers against spuri‐
ous correlations.

1.1 Scope of Reproducibility
Distinguishing between spurious and causal correlation is an active topic in causality
research [6, 7]. One central principle in causal inference is the assumption of indepen‐
dent mechanisms (IMs), which states that a causal generative process is composed of
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autonomous modules that do not influence each other [8, 1, 9]. The CGN introduced
in the original paper exploits this idea to decompose the image generation process into
three IMs, each controlling one factor of variation (FoV), namely the shape, texture, and
background. Using this, the authors take a step towards more robust and interpretable
classifiers that explicitly expose the causal structure of the classification task. In this re‐
producibility study, our main goal is to verify the following claims of the original paper:

• High‐Quality Counterfactuals (HQC): By exploiting proper inductive biases, the
CGN is able to reliably learn the independent mechanisms, which allow for the
generation of high‐quality counterfactual images by disentangling the shape, tex‐
ture and background of the image.

• Inductive Bias Requirements (IBR): Each independent mechanism has to be con‐
sidered, and jointly optimizing all of them end‐to‐end is needed for high‐quality
images.

• Out‐of‐DistributionRobustness (ODR): Despite being synthetic, the counterfactual
images can improve out‐of‐distributionperformance of classifiers bymaking them
invariant to spurious signals.

The remainder of this work is structured as follows. In Section 2, we introduce
the model proposed in the original paper to provide the reader with the required back‐
ground knowledge. Section 3 then summarizes our approach to reproduce the original
paper. Subsequently, Section 4 presents the replicated results and compares them to
the original paper. Section 5 concludes this work by discussing our experience with
reproducing the research by Sauer and Geiger [1].

2 COUNTERFACTUAL GENERATIVE NETWORK

The counterfactual generative network is a manifestation of a structural causal model
(SCM) for the task of image classification [1]. It decomposes the image generation pro‐
cess into four IMswhose losses are jointly optimized in an end‐to‐endmatter. Anoverview
of the CGN architecture is shown in Appendix A.

Shape mechanism: The shape mechanism fshape captures the shape as a binary mask
m, where 1 corresponds to the object and 0 to the background. For this purpose, it first
samples a pre‐mask m̃ with exaggerated features from a fine‐tuned BigGAN [10], and
extracts the binarymaskusing a pretrainedU2‐Net [11]. The shape lossLshape comprises
(1) the pixelwise binary entropy of the mask, and (2) the mask loss:

Lmask(m) = Ep(u,y)

[
max

(
0, τ − 1

N

N∑
i=1

mi

)
+max

(
0,

1

N

N∑
i=1

mi − τ

)]
. (1)

The pixelwise binary entropy forces the output to be close to either 0 or 1, whereas the
mask loss discourages trivial solutions that are outside the interval defined by τ .

Texture mechanism: The texture mechanism ftext generates the texture of the object.
For MNIST, Sauer and Geiger use an additional layer that divides its input into patches
and randomly rearranges them. In contrast, for ImageNet, they sample patches from
the regions where the mask values are the highest and concatenate them into a patch
grid pg. This mechanism is optimized by minimizing the perceptual loss between the
foreground f and the patch grid pg. As such, the background gradually transforms into
object texture during training.
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Background mechanism: The background mechanism fbg models the background b
of the image. It removes the object from the output of the BigGAN backbone and in‐
paints it using U2‐Net by minimizing the predicted saliency. Because there is no need
for a globally coherent background in the MNIST setting, the MNIST variant of the CGN
includes a second texture mechanism rather than a dedicated background mechanism.

Composer: The composerC combines the output of the aforementionedmechanisms
into a single composite image

xgen = C(m,f , b) = m⊙ f + (1−m)⊙ b, (2)

wherem is the mask, f is the foreground, b is the background, and ⊙ is the Hadamard
product. To optimize this mechanism, Sauer and Geiger use an external conditional
GAN (cGAN) that generates pseudo‐ground‐truth images xgt from the same noise u and
label y that is fed into the aforementionedmechanisms of the CGN. Using this, theymin‐
imize the reconstruction loss Lrec between the composite image xgen and the pseudo‐
ground‐truth image xgt.

During training, each independent mechanism learns a class‐conditional distribu‐
tion over shapes, textures, or backgrounds. It can then generate counterfactual images
by randomizing the noise u and label input y for each mechanism. A more detailed
explanation regarding the purpose of these counterfactual images and the connection
with explainable artificial intelligence (XAI) can be found in Appendix B.

In order to encode invariance to spurious correlations, Sauer and Geiger train classi‐
fiers on generated counterfactual data that retain the label from the shape with random‐
ized texture and backgrounds. For MNISTs, they use a standard CNN feature extractor
followed by a single classification head. For ImageNet on the other hand, they use a
CNN backbone with three classifier heads: shape, texture, and background; each in‐
variant to all but one factor of variation. The final prediction is obtained by averaging
the individual head predictions.

3 METHODOLOGY

The original implementation of the CGN is publicly available [12], but most of the exper‐
iments conducted in the original paper to support their claims are not. Consequently,
we use the authors’ code for the implementation of the CGN, and re‐implement the ex‐
periments and relevant evaluation metrics based on the descriptions provided in the
paper. Furthermore, we both improve and extend upon the work of Sauer and Geiger
by providing additional experiments and results. Because a description of the GANused
in the original paper was not provided, we use a DCGAN [13].

3.1 Datasets
The experiments conducted in the original paper involve two tasks, namely generating
counterfactual examples and training a classifier to be invariant to spurious correlations.
We follow the paper and reproduce their evaluations on multiple datasets for each task.
For both tasks, we present the relevant datasets and their main purpose in Table 1. Due
to resource constraints, running all experiments on full ImageNet (IN‐1k) is infeasible.
As a compromise, we use ImageNet‐mini (IN‐Mini) [14], a small‐scale variant of Ima‐
geNet. Although this dataset contains fewer samples, we found it to be sufficient to
reproduce the main findings of the original paper and verify their claims. Moreover,
this dataset includes the same classes as IN‐1k and hence does not induce any decrease
in difficulty of the classification task.
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Table 1. Datasets overview. The datasets used for empirical evaluations across two tasks.

Task Datasets Number of samples Classes Description URL
Train Test Total

Generating
counterfactual
samples

C‐MNIST [15] 50k 10k 60k 10 Foreground colour as a spurious correlation Link
DC‐MNIST 50k 10k 60k 10 Fore/background colour as spurious correlations NA1

W‐MNIST 50k 10k 60k 10 In‐the‐wild background with texture colour NA1

IN‐1k [16] 1M 100k 1.2M 1000 Large‐scale evaluation Link
IN‐mini [14] 35k 4k 39k 1000 Small‐scale evaluation Link

Training
invariant
classifiers

MNISTs 50k 10k 60k 10 Test different granularities of invariance Link
Cue‐conflict [17] NA 1280 1280 16 Tests shape‐texture disentanglement Link
IN‐9 variants [18] ∼45k ∼4k ∼50k 9 Tests background‐invariance Link

3.2 Hyperparameters
In order to match the original experiments as closely as possible, we used the same
hyperparameters as the authors of the original paper whenever they were specified in
the article. If the required hyperparameters for the experiments were not mentioned in
the original paper, we relied on the default parameters given in the configuration files
of the original implementation. In this case, we assume that these default parameters
correspond to the parameters used for the described experiments.

3.3 Experimental setup and evaluation metrics
Our experimental setup is largely based on thedescriptionprovidedby Sauer andGeiger [1].
To that end, we will address claim HQC by performing a qualitative analysis on both
MNIST and ImageNet. To verify claim IBR, we perform a loss ablation study in which
we disable one loss at a time. Lastly, to address the main claim of the paper, namely
ODR, we conduct a number of experiments on both MNIST and ImageNet to evaluate
both out‐of‐distribution performance and spurious signal invariance of the invariant
classifiers.

To provide further evidence to support claim ODR, we conduct additional experi‐
ments to visually explain thedecisionsmadeby the invariant classifiers based ongradient‐
based localization. For this purpose, we use a PyTorch implementation of GradCAM [19,
20], a class activation map method that weighs the 2D activations by the average gradi‐
ent [20]. This method allows us to visualize the salient features on which the invariant
classifiers base their predictions.

3.4 Computational requirements
We perform all experiments on a cluster whose nodes are equipped with Nvidia GeForce
GTX 1080 Ti GPUs. Due to constraints in resources, we run most experiments once.
As such, our experiments are indicative and not conclusive. Our reproducibility study
comes at a total computational cost of 112 GPU hours (see Appendix D for more details).

4 EXPERIMENTAL RESULTS

4.1 Reproducibility study
Evaluating counterfactual samples To verify claimHQC,wequalitatively evaluate coun‐
terfactual (CF) samples generated using CGNmodels on each dataset. For all our repro‐
ducibility experiments, we use the pretrained weights for CGN to generate CFs. We

1This variant ofMNIST is generated by the authors themselves and can be generated using their repository.
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found inconsistencies while training the CGN from scratch and refer the reader to Sec‐
tion 4.2.1 for a deeper investigation. For bothMNIST and ImageNet, our results indicate
that the quality of the generated CFs matches with the quality of those reported in the
original paper, as shown in Figure 1 and Figure 2 respectively. For ImageNet, although
we can easily recognize the FoVs in the generated CFs, they are highly unrealistic.

(a) Real images (b) Generated Counterfactual Images

Colored Double‐Colored Wildlife Colored Double‐Colored Wildlife

Figure 1. Qualitative Analysis MNIST. Left: Samples drawn from the different MNIST variations.
Right: Counterfactuals generated by the CGN on MNIST variants.

Shape Racer Trench coat Turtle Vase Malinois Barrel
Texture Clock Cab Cauliflower Elephant Viper Piggy bank

Background Toucan Coral reef Mushroom Alp Spider Ibex

Figure 2. Qualitative analysis ImageNet. Counterfactuals generated by the CGN on ImageNet.

Evaluating loss ablation Weattempt to reproduce the loss ablation study to verify claim
IBR. The authors claim that a CGN can be trained from scratch within 12 hours on a GTX
1080Ti GPU. However, when running the experiments as described by the authors, the
estimated training time exceeded 200 hours. Upon further inspection, we found an alter‐
native configuration file containing the hyperparameters the authors used to train the
CGN that was inconsistent with the default hyperparameters. Using these alternative
hyperparameters, we managed to decrease the training time to approximately 20 hours.
While the inception score magnitude directly depends on the number of generated im‐
ages used for the calculation, the original paper did not specify the exact number of
images used during the experiment. We empirically found that using 2000 images pro‐
vides inception scores that resemble those reported in the original paper.

The results in Table 2 indicate that the inception scores follow a similar trend as re‐
ported by the authors (marked as x ). However, when disabling the texture loss, we
found µmask to be 0.4, whereas the original paper reported a value of 0.9. This is a
crucial difference, because the value of 0.9 of the original paper indicates a mask col‐
lapse, which the authors use to support claim IBR. Nonetheless, wewere able to support
this claim by performing an additional qualitative experiment. Specifically, if we look
at some samples as shown in Appendix E, it is clear that the generated texture still in‐
cludes some background. This indicates that the IMs for texture and background are no
longer disentangled, which shows that the texture loss is indeed necessary.

Table 2. Loss Ablation Study. We turn off one loss at the time.
Lshape Ltext Lbg Lrec IS ⇑ µmask

7 3 3 3 100.8 | 85.9 0.3 | 0.2
3 7 3 3 186.5 |198.4 0.4 | 0.9
3 3 7 3 200.9 |195.6 0.1 | 0.1
3 3 3 7 19.3 | 38.4 0.4 | 0.3
3 3 3 3 156.1 |130.2 0.3 | 0.3
BigGAN (Upper Bound) 202.9 ‐
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OnMNIST variants, we identify an inconsistency in the experimental setup stated in
the paper and code. The paper seems to suggest using a combination of original and CF
dataset, but the code only uses CF data. As reported in Table 3, we experiment with both
and observe similar results for C‐MNIST and DC‐MNIST. Surprisingly, for CGN, adding
original data hurts the performance for W‐MNIST (62.9 vs. 81.4). Apart from that, the
majority of our results arewithin 5% variation from those reported in the paper (marked
as x ), which supports the broader claim of better generalization even in the presence
of spurious correlations (e.g., texture in case of colored MNIST).

Table 3. MNIST classification. In the test‐set, the texture and background are randomized; only
the digits shape corresponds to the class.

Setting C‐MNIST DC‐MNIST W‐MNIST
Train ⇑ Test ⇑ Train ⇑ Test ⇑ Train ⇑ Test ⇑

O(riginal) 99.7 | 99.5 37.6 | 35.9 100 | 100 10.5 | 10.3 100 | 100 10.8 | 10.1
GAN 99.6 | 99.8 32.5 | 40.7 100 | 100 10.6 | 10.8 99.9 | 100 11.2 | 10.4
CGN 99.4 | 99.7 92.3 | 95.1 94.8 | 97.4 86.5 | 89.0 95.5 | 99.2 81.4 | 85.7

O + GAN 99.6 | 99.8 41.5 | 40.7 100 | 100 10.0 | 10.8 100 | 100 11.1 | 10.4
O + CGN 99.2 | 99.7 95.9 | 95.1 96.9 | 97.4 85.5 | 89.0 96.8 | 99.2 62.8 | 85.7

To evaluate the invariance in classifier heads on IN‐mini, we first reproduce the ex‐
periment regarding shape bias from the original paper. The shape bias is defined as
the fraction of test samples for which the predicted label matches the shape label of the
input image [17]. In this case, we evaluate labels with predictions from each head. As
reported in Table 4, our results are smaller in comparison to the IN‐1k results reported
in the original paper. Nonetheless, the overall trend does support claim ODR. Addition‐
ally, we replicate the experiment regarding the evaluation of background robustness.
The paper uses the notion of BG‐gap that measures classifiers’ reliance on background
signal [21]. Our results, shown in Table 5, again slightly deviate from the original paper
but the trend supports claimODR. Note that, although IN‐mini was used for the training
set instead of IN‐1k , the evaluation has been performed using the same datasets as in
the paper.

Table 4. Shape vs. texture. Evaluation of shape biases of independent classifiers.
Trained on Shape Bias top‐1 ⇑ top‐5 ⇑
IN + GCN/Shape 54.8
IN + GCN/Text 16.7 74.0 91.7
IN + GCN/Bg 22.9
IN‐mini + GCN/Shape 49.1
IN‐mini + GCN/Text 20.5 56.2 79.1
IN‐mini + GCN/Bg 25.7

Table 5. Backgrounds Challenge. Evaluation of robustness against adversarially cho‐
sen backgrounds.

Trained on IN‐9 ⇑ Mixed‐Same ⇑ Mixed‐Rand ⇑ BG‐Gap ⇓
IN 95.6 86.2 78.9 7.3
SIN 89.2 73.1 63.7 9.4
IN + SIN 94.7 85.9 78.5 7.4
Mixed‐Rand 73.3 71.5 71.3 0.2
IN + CGN 94.2 83.4 80.1 3.3
IN‐mini + CGN 86.8 73.2 68.3 4.9

To evaluate the effect of using more counterfactual datapoints or generating more
counterfactual images per sampled noise, Sauer and Geiger performed an MNIST Ab‐
lation Study in the original paper. Our reproduction for this experiment, along with
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a more detailed description regarding the experiment and results, can be found in Ap‐
pendix G.

4.2 Results beyond original paper

Improving CGN training onMNISTs —While training the CGN on theMNIST, we encountered
an issue that was not mentioned in the original paper. During the training process, we
observed that the digit masks had a tendency of collapsing to an erroneous state, from
where the digits would no longer improve during training. For this reason, it was not
possible for us to reproduce the CGN training on the MNIST data using the default con‐
figuration. Therefore, we have proposed a solution that makes the CGN training on the
MNIST datasets more consistent. Details regarding our solution can be found in Ap‐
pendix C.

Explainability analysis for invariant classifiers —While the reproduced experiments for the
original paper provide some support for claim ODR, these results primarily show the
effect of using counterfactuals on test accuracy performance. However, it is not directly
clear from these quantitative experiments if the performance increase is actually due to
the fact that the use of counterfactuals ensures that the classifier focuses on the right
correlations (e.g., shape) and not spurious ones (e.g., background). To further verify the
validity of claim ODR, we provide two additional analyses that combine qualitative and
quantitative measures to evaluate the behaviour of the counterfactual classifiers.

What does the latent feature space look like? First, we visualize learnt classifier fea‐
tures using t‐SNE for a subset of the test set of original and counterfactual (CF) data for
C‐MNIST. Figure 3(a) shows that a classifier trained on CF data is indeed invariant to
spurious correlations (e.g. digit color). Figure 3(b) shows that a classifier trained on CF
data is also better at representing OOD samples (e.g. counterfactuals). Interestingly, the
latter figure also shows that the CF‐trained classifier tends to group the clusters for 4‐7‐9
and 3‐5‐8 close to each other, which was not the case for the classifier trained on origi‐
nal data. These digits are also close in shape in reality, which suggests that the model
is rightly focusing on the shape while ignoring texture. The results for other MNIST
variants are consistent with this finding.
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(a) Feature for original samples (b) Features for CF samples

Figure 3. Feature visualization. Feature space of a CNN classifier trained on original/CF data for
colored MNIST.

What features does the model focus on? Second, we perform an experiment to visu‐
alize a spatial heatmap of areas that the model focuses on to make a prediction. Based
on claims ODR and IBR, we would expect the different heads to operate separately from
one another, while being completely invariant to the other FoVs. In order to generate
the spatial heatmaps we use GradCAM. Some qualitative samples are shown in Figure 4.
In addition to the qualitative analyses, using GradCAM provides the opportunity to for‐
mulate another quantitative measure to validate claims ODR and IBR. This quantitative
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analysis aims to measure if CF‐trained models focus on shape more than those trained
on original data. To this end, we compute themean Intersection of Union (IoU) between
GradCAM heatmaps and binarized digit masks on the test set. We note that a classifier
trained on CF data is consistently outperforms the classifier on original data.

Trained on original Trained on CF Trained on original Trained on CF Trained on original Trained on CF

C-MNIST DC-MNIST W-MNIST

Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

IO
U

IoU between GradCAM heatmap & GT

Original Counterfactual

(a) C‐MNIST (b) DC‐MNIST (c) W‐MNIST (d) Mean IoU

Figure 4. Explainability analysis. (a) to (c): Visualization of GradCAM heatmaps for samples from
each of the MNIST datasets. (d): Mean IoU between GradCAM heatmaps and ground truth bina‐
rized digit masks.

While the quantitative results using the IoUmetric cannot be performed on the Ima‐
geNet data, due to the lack of ground truth binary object maps, it is possible to evaluate
the qualitative performance of the IMs using GradCAM. As shown in Appendix H, the
individual classifier heads tend to focus on meaningful aspects.

OOD generalization for invariant classifiers — In order to provide further evidence for the
claim ODR, we test the model performance on alternative ImageNet datasets, which are
designed to evaluate out‐of‐distribution robustness. Specifically, we evaluate the per‐
formance on ImageNet‐A (natural adversarial examples) [22], ImageNet‐Sketch [23] and
Stylized‐ImageNet [24], and compare with a ResNet‐50 baseline that is pretrained on IN‐
1k. Surprisingly, we find that the finetuned CGN‐based ensemble performs worse on all
specified OOD‐benchmarks, compared to the pretrained ResNet‐50 baseline as shown
in Table 6.

Table 6. OOD generalization. Comparison of top‐1 accuracy of invariant classifier with pretrained ResNet on
OOD benchmarks.

Model Pretrained Finetuned IN‐mini ⇑ IN‐A ⇑ IN‐Sketch ⇑ IN‐Stylized ⇑

ResNet‐50 IN‐1k ‐ 75.580 3.400 24.092 19.218
CGN Ensemble IN‐1k IN‐mini + CF 56.793 1.387 11.775 17.188

5 DISCUSSION

Throughout this work, we have conducted several experiments to reproduce the main
results from the research by Sauer and Geiger [1]. The results of our reproducibility
study provide support for their claims, as we were largely able to reproduce the original
results. Specifically, our results showed that the test accuracy for the MNIST classifiers
greatly improved when using generated counterfactual datasets. Then, we were able
to use the ImageNet‐mini dataset to achieve similar performance trends compared to
the original paper in terms of shape versus texture bias evaluation, and the background
robustness evaluation. However, based on the qualitative analyses for claim HQC, it is
clear that the quality of the generated counterfactual images could still be improved.
Specifically, we have observed some distinct failure cases regarding the quality of gen‐
erated counterfactual images, which are described in Appendix I.

Interestingly, while the loss ablation study provided similar results to what the au‐
thors reported in the original paper, we did obtain different results for the experimental
run without texture loss. As the authors used this study to provide evidence for claim
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IBR, this difference is quite significant. Nonetheless, qualitative analysis of the images
that were generated without texture loss revealed that the quality of the generated im‐
ages indeed reduced when the texture loss was omitted. Although this does provide
support for claim IBR, it also shows that the IS and µmask metrics used by the authors
in the loss ablation study may not be sufficient to support their claims. Since the loss
ablation study is therefore not conclusive, further research is required to investigate
if the inductive biases introduced by the authors are indeed ‘appropriate’. The results
from our additional experiments provide further evidence that counterfactual images
generated with the proposed CGN architecture can be used to train classifiers that are
more robust against spurious signals. Using GradCAM, we were able to visualize this
behaviour and formulate a quantitative performance metric.

Overall, the experiments from the original paperwere largely reproducible, and their
main claims seem reasonably substantiated but could benefit from additional evidence
in future research. The code implementation of our reproducibility study is publicly
available 1.

Limitations Unfortunately, we did encounter some difficulties during the reproduc‐
tion process. First, since our model was trained on IN‐mini, we were not able to repro‐
duce the exact same results as the original paper. However, despite the slightly deviat‐
ing results, the overall trends in the results seem to correspond well with the original
results. Second, as some experimental setup information wasmissing from the original
paper, we had to rely on the default parameter configuration files that were provided in
the original code implementation, even though we can not be completely certain that
these parameters were used for the original experiments.

5.1 Reflection: What was easy, and what was difficult?
The original paper provides an extensive appendix with implementation details and hy‐
perparameters. Beyond that, the original code implementation was publicly accessible
and well structured. As such, getting started with the experiments proved to be quite
straightforward. The implementation included configuration files, download scripts for
the pretrained weights and datasets, and clear instructions on how to get started with
the framework.

Nonetheless, reproducing the original results turned out to be far from trivial as the
setup of some of the experiments required severe modifications to the provided code.
Additionally, some details required for the implementation are not specified in the pa‐
per or inconsistent with the specifications in the code (e.g., the GAN as mentioned in
Section 3). Lastly, in evaluating robustness to OOD, getting the baseline model to work
and obtaining numbers similar to those reported in the respective papers was challeng‐
ing, partly due to baseline model inconsistencies within the literature.

5.2 Communication with original authors
We have reached out to the original authors to get clarifications regarding the setup of
some of the experiments. For example, we asked the authors if they could share pre‐
trained weights from the classifiers that were trained on full ImageNet, and which type
of GAN architecture was used for the MNIST experiments. Unfortunately, we received a
late response and only a subset of our questions was answered, and as a result we were
not able to fully verify whether our design choices were consistent with those of the
original paper.

1https://github.com/danilodegoede/fact-team3/
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Appendix

A Counterfactual Generative Network Architecture

In Figure 5, we provide an overview of the architecture of the CGN as provided in the
paper. It illustrates how the CGN is split into four mechanism: the shape mechanism,
the texture mechanism, the background mechanism, and the composer. Each mecha‐
nism takes a noise vector u and a label y as input. To generate a counterfactual image,
we sample u and then sample a separate y for each mechanism Sauer and Geiger [1].

cGAN

CGN

BigGAN

BigGAN

BigGAN

BigGAN U2-Net

U2-Net

Figure 5. CGN architecture. Components with trainable parameters are blue, components with
fixed parameters are green. The dotted lines indicate that the cGAN is only used for training [1].

B Counterfactual images and explainability in artificial intelligence

One of the primary contributions of the work by Sauer and Geiger [1] is the proposed
method to create high‐quality ‘counterfactual’ images, which can be used to make a
classifier more robust to spurious signals. As the concept of counterfactual explanations
is closely related to the idea of explainable artificial intelligence (XAI) but is never ex‐
plicitly mentioned in the paper, we first want to place the article in a broader context
to achieve a deeper understanding of how the considered work relates to other develop‐
ments within this field of research [25].

Based on the reviewbyVerma, Dickerson, andHines [26], approaches for explainabil‐
ity in machine learning can be roughly divided into one of two categories: (i) methods
that use inherently interpretable and transparent models, and (ii) methods that gener‐
ate post‐hoc explanations for opaque models.

The idea of counterfactual explanations belongs to the example‐based approaches
within the category of post‐hoc explanations, that seek to offer explanations by either
providing datapoints that receive the same prediction label as the observed datapoint, or
by providing datapoints whose prediction label is different from the observed datapoint.

Consider the example where a classifier is trained to distinguish images from polar
bears and American black bears. Given an image that has been classified by the model
as a black bear, we could attempt to provide a post‐hoc explanation for the model’s pre‐
diction using a visual counterfactual explanation (i.e., a modified version of the input
image that would be classified as a polar bear instead). These explanations can, for
example, be generated using techniques such as StylEx [27]. A reasonable visual coun‐
terfactual explanation could consist of the input image, modified such that the fur of
the black bear is now colored white. However, as most images of polar bears have a
snow‐background, andmost images of American black bears likely do not, it is possible
that the suggested visual counterfactual explanation still contains a black bear, but now
on a snowy background.
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In this case, one could argue that the background‐explanation that is captured by the
model is a spurious signal. That is, the classifier ‘falsely’ makes predictions on the back‐
ground, even though the background, in reality, does not affect the actual object itself.
Although this spurious signal might seem innocent within the context of this example,
other spurious signals can play a role in a variety of high stake deep learning applica‐
tions, such as AI in medical‐imaging [28] and networks trained for military purposes
[29]. While counterfactual explanations are thus capable of revealing such spurious sig‐
nals, the proposed method using counterfactual images by Sauer and Geiger provides
an approach to mitigate this effect.

C Improved CGN Training for MNIST

While training the CGN on theMNIST, we encountered an issue that was not mentioned
in the original paper. During the training process, we observed that while some digits
were captured almost perfectly by the model, other digit masks seemed to collapse to a
state where there was a black circular shape in the center of the image with a surround‐
ing white border (see Figure 6). When using the generated counterfactual datasets from
these imperfect models to train a classifier, we then observed that the number of ‘cor‐
rect’ (i.e., non‐collapsed) images correlated strongly with the classifier performance.

Any attempt to remedy this issueusing adjustedhyperparameter configurations proved
to be ineffective, because thehyperparameter names in theprovideddefault configuration‐
files did not directly correspond to the descriptions given in the original paper. This
observation inspired a solution where we add an extra loss term to the training objec‐
tive, which penalizes mask‐pixels at the borders of the image. Specifically, if we define
the edge region E as the set of pixels that are within s pixels from the edge, the edge
loss function can be defined as the sum of all pixel values mi within the specified edge
region:

Ledge(m) = Ep(u,y)

[
1

N

N∑
i=1

mi · [i ∈ E ]

]
, (3)

where N denotes the number of pixels in mask m, and [·] denotes the Iverson bracket.
As the original MNIST images in the training and test datasets often contain almost no
pixels at the borders, this loss function returns values close to 0 for all ground truth
MNIST images. During our experiments, we used a border size of 3 pixels, as this con‐
figuration seems to perform well to mitigate the mask‐collapse issue, while still giving
loss values close to 0 for the original MNIST images. By using this extra loss function,
the training process becamemuchmore consistent and lead to an average classifier test
accuracy of 89.8% for the Colored MNIST dataset, which is close to what was reported
in the original paper.

(a) Original training (b) Improved training

Masks Generated Masks Generated

Figure 6. Qualitative edge loss evaluation. Generated samples with and without the edge loss.
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In Figure 10, we show that our modified training formulation improves the quality
of generated images. In particular, we notice that incorporating Ledge in the mask loss,
on average, noticeably decreases the number of non‐broken images.

0 1 2 3 4 5 6 7 8 9 10
Number of not-broken masks
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Figure 7. Quantitative edge loss evaluation. The fraction of experiment runs for each number of
‘correct’ digits.

D Computational Cost Taxonomy

Table 7. Cost taxonomy. Overview of the computational cost associated with each experiment.

Experiment type Experiment name Support of Claim Section Computational Cost (GPU Hours)

Reproducibility Study

Evaluating counterfactual samples HQC 4.1 0.0
Required Inductive Biases IBR 4.1 84.0
Evaluating invariant classifiers: MNIST ODR 4.1 6.0
Evaluating invariant classifiers: IN‐Mini ODR 4.1 8.0
Ablation study (Appendix G) ODR 4.1 14.0

Additional results
Improved CGN Training HQC 4.2.1 48.0
Explainability analysis: MNIST ODR 4.2.2 < 1.0
Explainability analysis: IN‐Mini ODR 4.2.2 < 1.0
OOD generalization evaluation ODR 4.2.3 < 1.0

E Qualitative Analysis of Loss Ablation Study

(a) No shape loss (b) No texture loss

Figure 8. Qualitative Loss Ablation. Comparison between IM outputs when excluding the shape
loss and texture loss. From left to right: m, m̃, f , b, xgen as described in Section 2.
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F GAN-based Baseline for MNISTs

We follow the ConvNet‐based architecture for the generator inspired by PyTorchDCGAN
tutorial and retain the linear discriminator as is used by Sauer and Geiger [1]. We only
use binary cross entropy loss for adversarial training of both G and D. All necessary
hyperparameters are same as for the CGN training. These alongwith pretrainedweights
can be found in our code repository.

(a) C‐MNIST (b) DC‐MNIST (c) W‐MNIST

Figure 9. GAN samples. Samples generated by a GAN baseline on MNIST variants.

G Reproduced MNIST Ablation Study

Figure 10 shows our reproduced results for the MNIST ablation study. Our results show
that usingmore counterfactual datapoints generally improves the test accuracy, although
this was not the case for the Colored MNIST dataset, where the test accuracy decreased
when using 106 counterfactual datapoints instead of 105. However, the difference in
performance is only minor. The differences in CF ratios do not seem to have a signif‐
icant effect on the test accuracies. These results seem to support the claim from the
original paper that using more counterfactual images always increases the test domain
results for MNIST datasets, although there only seems to be a significant performance
increase when using 105 datapoints instead of 104. Using evenmore datapoints does not
seem to provide a significant increase in performance.
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Figure 10. MNIST ablation study. We evaluate the impact of using more counterfactual data and
generating more counterfactuals per sampled noise on the measured test accuracy.

H GradCAM samples on ImageNet-mini

A classifier trained jointly on original and CF data is expected to have encoded invari‐
ances for certain attributes and distinctiveness for others. Recall that the proposed clas‐
sifier architecture for ImageNet is an ensemble with three heads for shape, texture and
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background. We pose the question: What spatial aspects of an image does each head
focus on and what prediction does it lead to? We answer this qualitatively by analyzing
GradCAM heatmaps for outputs of each of the heads as well as the averaged ensemble
output. In general, the individual heads tend to focus on meaningful aspects, as shown
in Figure 11, background head focuses on background. Further, for original images,
we observe that a correct prediction often relies on shape (e.g., puck in Figure 11a) or
texture (e.g., goldfinch). In some cases, it correctly relies on background (e.g., castle).
For counterfactuals, surprisingly, in most cases we found that the label predicted from
shape, although correct, is dominated by incorrect label from background and texture.
This may be a symptom of either insufficient counterfactual training data or the use of
IN‐mini instead of IN‐1k. We further note that texture often drives the label decision for
counterfactuals.

(a) Original examples
Original (y = puck) Shape (ŷ = puck) Texture (ŷ = ski) Background (ŷ = puck) Average (ŷ = puck)

Original (y = submarine) Shape (ŷ = submarine) Texture (ŷ = abacus) Background (ŷ = Arabiancamel)Average (ŷ = lumbermill)

Original (y = castle) Shape (ŷ = platerack) Texture (ŷ = palace) Background (ŷ = castle) Average (ŷ = castle)

(b) Counterfactual examples
Original (y = goldfinch) Shape (ŷ = coucal) Texture (ŷ = goldfinch) Background (ŷ = housefinch) Average (ŷ = goldfinch)

Original (y = rainbarrel) Shape (ŷ = jack − o′ − lantern) Texture (ŷ = ambulance) Background (ŷ = beaver) Average (ŷ = weasel)

Original (y = waterbottle) Shape (ŷ = chainsaw) Texture (ŷ = banana) Background (ŷ = trimaran) Average (ŷ = banana)

Figure 11. Explainability Analysis ImageNet. GradCAM heatmaps visualized with respect to in‐
dividual head outputs for original and counterfactual samples. The coresponding ground truth
labels and predictions are provided too.
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I Some failure modes in CGN-generated samples

Since generation of high‐quality counterfactuals is one of the main claims of the paper,
we perform a deeper qualitative analysis to observe if there exist typical failure modes.
Based on anecdotal evidence, we note the following observations.

Texture‐background entanglement for small objects For cases with small objects on a
uniformbackground, such as the bird kite in sky, shown in Figure 12(a), or skiing
on snow, shown in Figure 12(b), we see consistent entanglement between texture and
background.

Objects with complex texture We observe that objects with complicated texture, such
as crossword puzzle, shown in Figure 12(c), result in poorly recovered texture by
the CGN.

Complex scenes As one would expect, the CGN approach does not generalize to com‐
plex scenes since it assumes a simplistic causal structure. We show an example of this
in Figure 12(d).

(a) Kite in sky
Shape Texture Background Counterfactual

(b) Skiing in snow
Shape Texture Background Counterfactual

(c) Crossword puzzle
Shape Texture Background Counterfactual

(d) Confectionery
Shape Texture Background Counterfactual

Figure 12. Failure modes. Cases highlighting some common failure modes in samples generated
using CGN.
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