OF AMSTERDAM

Test of Time: Instilling Video-Language Models with a Sense of Time
Piyush Bagad, Makarand Tapaswi, Cees G. M. Snoek
Hen

I. Can you match these video-text pairs?

The child eats ice-cream before walking down the slope.

The child walks down the slope before eating ice-cream.
III. Can we instill this sense of time without expensive training from scratch?

- Training video-language models from scratch is super-expensive Our secret: carefully crafted negative samples for contrastive learning to make models time-aware
- We adapt VideoCLIP (Xu et al.) using the following recipe:
Usual Positives

Usual Negatives

Time-order reversed negative (same sample)
Time-order reversed negatives (cross sample)

Time-order reversa function

A yellow circle appears before a red circle - Time order task

We design test of time using a simple synthetic dataset
$\frac{5}{5}$ - We find that seven of the existing models fail on this test
으 • All excel at the control task ruling out possibility of out-of-distribution

A red circle appears

A yellow circle appears - Control task

- On four diverse datasets, we show better time-awareness while preserving retrieval capabilities
- Adapted models pass test of time with flying colors! (see paper for numbers)

IV. Does it work beyond before/after relations?
- We test on sentences like: "First, [event 1], then, [event 2]"
- Adapted model again passes the test even with an unseen new prompt

V. Towards more general time-awareness
- Does having this narrow sense of time benefit other kinds of temporal reasoning tasks? On several temporal reasoning tasks, we observe benefits over non-temporal baseline

- We show adaptation for instilling sense of time without training from scratch. What other properties can be instilled in foundation models?
(O)

0 \square冒
piyush.bagad@student.uva.nl

el AMSTERDAM

